Effects of spontaneous and forced running on activation of hypothalamic corticotropin-releasing hormone neurons in rats.

نویسندگان

  • Shinya Yanagita
  • Seiichiro Amemiya
  • Satoko Suzuki
  • Ichiro Kita
چکیده

Corticotropin-releasing hormone (CRH)-containing neurons in the hypothalamic paraventricular nucleus (PVN) are known to be activated during physical or psychological stress, and play an important role as one of the central activators of integrated stress response. Physical exercise has also been suggested as one of the stressors activating CRH neurons in the PVN. Spontaneous wheel running (SWR) has recently been reported to result in improved mental health or mood, unlike treadmill running that commonly forces the animal to run. Thus, forced running may strongly induce an activation of CRH neurons compared with spontaneous running, and spontaneous running may not represent a strong stressor. However, whether the effects of spontaneous running on activation of CRH neurons in the PVN differ from those of forced running is unknown. The present study examined the activity of CRH neurons in 1-h forced wheel running (FWR) and SWR using c-Fos/CRH immunohistochemistry in male Wistar rats. No significant differences in 1-h running distance were observed between FWR and SWR, indicating that amount of work was almost equal between exercises. Number of double-labeled neurons for c-Fos and CRH in the PVN was markedly higher in FWR than in SWR. In addition, no significant differences in Fos expression in the LC, which is related to various stress responses, were found between FWR and SWR. These results indicate that FWR strongly activates CRH neurons in the PVN compared with SWR, suggesting that spontaneous running is not an intense stressor even though running distance does not differ significantly from forced running.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paeoniflorin regulates the hypothalamic-pituitary-adrenal axis negative feedback in a rat model of post-traumatic stress disorder

Objective(s): To investigate the effects of paeoniflorin (PEF) on the hypothalamic-pituitary-adrenal (HPA) axis feedback function of post-traumatic stress disorder (PTSD). cSingle-prolonged stress (SPS) was used to establish a PTSD-like rat model. The contents of plasma corticosterone (CORT), adrenocorticotropin hormone (ACTH) and cortic...

متن کامل

Regulation of corticotropin-releasing factor and its types 1 and 2 receptors by leptin in rats subjected to treadmill running-induced stress.

The present study was conducted to investigate the long-term effects of subchronic elevation of central leptin levels on the expression of corticotropin-releasing factor (CRF) and its types 1 and 2 receptors in the brain of rats subjected to treadmill running-induced stress. PBS or recombinant murine leptin was infused continuously for a period of 5 days into the third ventricle of rats with th...

متن کامل

Lateral Hypothalamus Corticotropin Releasing Hormone Receptor-1 Inhibition Modulates Stress- Induced Anxiety Behavior

Stress is a reaction to unwanted events disturbing body homeostasis which influences its pathways and target areas. Stress affects the brain through the lateral hypothalamic area (LHA) orexinergic system that mediates the effect of corticotropin-releasing hormone (CRH) through CRH receptor type 1 (CRHr1). Therefore, this study explores the outcome of stress exposure on anxiety development and t...

متن کامل

Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats

Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH) impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivati...

متن کامل

The effects of supraphysiological levels of testosterone on neural networks upstream of gonadotropin-releasing hormone neurons

Objective(s): Several pathological conditions are associated with hyper-production of testosterone; however, its impacts are not well understood. Hence, we evaluated the effects of supraphysiological levels of testosterone on gonadotropin-releasing hormone (GnRH) system in the hypothalamus of male rats. Also, we assessed the expression of two excitatory (kisspeptin and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Life sciences

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 2007